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A novel scheme using artificial neural networks to automate the vibration monitoring 
method of detecting the occurrence and location of damage in offshore jacket platforms is 
presented. A multiple neural network system is adopted which enables the problem to be 
decomposed into smaller ones, facilitating easier solution. An adaptive resonance theory 
(ART) neural network is used for damage diagnosis and its advantages and limitations are 
investigated. A comparison between a back-propagation network and an ART network is 
presented. The adaptability of ART for on-line monitoring is explored for possible 
adaptation to monitor offshore platforms in service. The system developed is tested using 
data Tom a finite-element analysis of a scale model of a jacket platform. Copyright 0 1996 
Elsevier Science Limited. 
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1 INTRODUCTION 

The discovery of large oilfields in deeper waters has neces- 
sitated the construction of offshore structures in greater 
depths of water. A typical offshore structure used for oil 
and gas production encounters larger forces due to wind 
and currents than comparable land structures. In addition 
it will be subjected to higher levels of cyclic load due to 
gravity waves causing fatigue damage. These types of struc- 
ture also have to withstand stresses due to self weight and 
water pressure. Since they are constructed in harsh environ- 
ments, long-term damage also takes place due to corrosion, 
erosion and scour. Offshore structures are also prone to 
short-term damage which can be attributed to loads which 
exceed the design load, for example unprecedented severe 
storms, sea quakes or accidental collisions with supply ves- 
sels. Damage of all kinds should be detected quickly so that 
corrective action can be taken to avoid catastrophic failures. 
Consequently, there is a need for an efficient and reliable 
monitoring system for such structures. 

The methods currently adopted for monitoring offshore 
platforms are visual inspection, measurement of strains, 
monitoring of dynamic parameters, detection of flooding 
in members, and local damage detection using acoustic 
and magnetic methods. Visual inspection, although efficient 
in the case of land structures, is difficult in offshore 
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structures in deeper waters. Marine growth also prevents 
the use of this method. Acoustic and magnetic methods 
are very costly and are not capable of detecting global 
damage. The measurement of dynamic parameters has 
been proved to be efficient for detection of local as well 
as global damage.lm4 This method also has the advantage 
of continuous monitoring and automatic detection in 
addition to being independent of expensive diver support. 
Information processing systems like neural networks are 
useful in the implementation of automated structural 
health monitoring.5-8 

The identification of damage of the members of a struc- 
ture from response characteristics is an inverse process. As a 
fust step, a suitable mathematical model is constructed. 
Different representative cases of damage are induced in 
the mathematical model and the corresponding dynamic 
parameters are determined. These are compared with the 
measured dynamic parameters of the structure. The damage 
of the structure, if any, will correspond to the pattern which 
most closely resembles the input pattern. Manual compar- 
ison of the pattern becomes impossible as the number of 
damage cases increases. To overcome this difficulty, the 
pattern matching capability of neural networks is employed. 

ln the present work, the problem is broken into several 
subproblems and different neural networks are used to solve 
each of these problems. A comparison between an adaptive 
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resonance theory (ART) network and a back-propagation 
network (BPN), with special reference to the present pro- 
blem, is presented. The applicability of an ART network to 
online damage detection is investigated. Finally, the devel- 
oped system is tested using a large number of damage cases 
to bring out its feasibility and limitations. 

2 NEURAL NETWORKS 

The intensive research which has taken place recently in the 
field of artificial intelligence has made it possible to solve 
badly structured problems which were not amenable to con- 
ventional programming techniques. The artificial neural net- 
work, or simply the neural network, is one of the outcomes 
of this research. They are information-processing systems 
loosely modelled on the working of the human brain. They 
attempt to achieve better performance by using a massively 
parallel architecture. Neural networks have a greater degree 
of robustness or fault tolerance than conventional methods. 
They also have adaptive learning capabilities analogous to 
human beings. A neural network consists of a number of 
interconnected simple processing units called artificial neu- 
rons which are capable of only simple mathematical opera- 
tions. Before any neural network is put into operation, it 
should be properly trained. Training a neural network 
means adjusting the values of the internal parameters such 
that for a set of input data, the desired set of outputs is 
obtained. There are two classes of training methods, viz 
supervised and unsupervised. Some of the commonly used 
neural network paradigms are back propagation, the Hop- 
field net, counter propagation, adaptive resonance theory, 
and bidirectional associative memory. The two paradigms 
used in the present work, viz the back propagation network 
(BPN) and adaptive resonance theory (ART) are briefly 
described below. For more details, the reader should refer 
to the standard literature.9-‘2 

3 BACK PROPAGATION NETWORKS 

Back propagation13 is a very popular and commonly used 
neural network paradigm. It uses a multi-layer feed-forward 
network (Fig. 1). This type of network, with at least two 
hidden layers, has been shown to be capable of representing 
any complex input-output relation. The algorithm gives a 
method for training any feed-forward network to learn a set 
of input-output pairs. The method is briefly described 
below. 

The multi-layer feed-forward network consists of dif- 
ferent interconnected layers of artificial neurons (Fig. 2). 
The first layer is the input layer where the inputs are 
applied and the last layer is the output layer. The layers 
in between the input and output layers are termed hidden 
layers. The activity of a neuron, Xi, is the sum of the 
inputs from the different connecting pathways, which is 
the incoming signal uj multiplied by the weight wg of 
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Fig. 1. Multi-layer feed-forward network. 

that pathway, i.e. 

Xi = z (Wij X Uj) (1) 

The outgoing signal, Sip from a particular neuron i is the 
value of the squashing function of the activity in that 
neuron given by 

si =f Cxi) (2) 

The squashing functions can be hard limiters, sigmoid, or 
hyperbolic tan functions. The inputs are summed up and the 
squashing function is applied at each neuron before passing 
to the next layer. The process is repeated at each layer in 
the forward direction until the output layer is reached. 

The basis of the BPN training algorithm is simply the 
gradient descent method. The error at the output layer, i.e. 
the difference between the output obtained Si and the desired 
output Di is propagated back through the network and the 
weights are adjusted using the formula 

Awii = rl1 @output x glut) (3) 

where 

6 output =f ‘(4 x Pi -$I (4) 
Here, input and output refer to the two ends i and i of the 
connection concerned and u stands for the appropriate input 
activation from a hidden unit or a real input. f ‘(Xi) is the 
first derivative of the squashing function applied to Xi and n 
is a constant termed as the learning rate. 

Fig. 2. Artificial neuron. 
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The BPN has been successfully employed in a wide vari- 
ety of problems such as speech recognition and object iden- 
tification. BPNs are very robust and can represent any 
highly nonlinear input-output relationship. Their main 
disadvantage is the long uncertain training process. The 
possibility of the network converging to a local minima is 
high. Also, it is difficult to incorporate adaptive learning 
capabilities. 

4 ADAPTIVE RESONANCE THEORY 

An adaptive resonance theory network for analogue data 
(ART-2) has been proposed by Carpenter & Grossberg.14 
Often in common neural network paradigms, learning a new 
pattern erases the previous training. ART networks have the 
capability to learn new data or adapt themselves to new 
situations. The ART network is a vector classifier. It accepts 
an input vector and classifies it into categories depending 
upon their similarities. If the input pattern does not match 
any one of the stored patterns, within a given tolerance limit 
(the vigilance parameter), a new class is created. Otherwise, 
the stored pattern which matches the new pattern is adjusted 
to look more like the new pattern. The operation of a sim- 
plified version of the ART network is described below. 

The main components of ART systems are the compar- 
ison layer, the recognition layer, gain control and the reset 
mechanism (Fig. 3). The nodes on the comparison and 
recognition layers are fully interconnected. Initially, the 
pattern is presented to the comparison layer. The net activity 
of the comparison layer is the sum of the input vector, input 
from the gain control, and any feedback from the recogni- 
tion layer. This is propagated to the recognition layer 
through the bottom-up weights. The recognition layer acts 
in a winner-takes-all manner. Only one node in the recogni- 
tion layer is activated. This is propagated back to the com- 
parison layer through the top-down weights where it is 
compared with the input vector. If both match within the 
given vigilance tolerance, then the input vector is classified 
as the class corresponding to the winner in the recognition 
layer. If the patterns do not match, then a reset signal is sent 
to the recognition layer to disable the winning node so that it 
does not take part in the competition during the next pass. 
This process is repeated until a match is obtained for the 
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Fig. 3. Adaptive resonance theory network. 

input pattern or all the nodes in the recognition layer are 
exhausted, In this case, a new node is selected and the 
pattern is classified as a new class by adjusting the corre- 
sponding weights. 

ART has been successfully used for classification pro- 
blems. The main advantage of ART is its ability to learn 
new patterns without losing previously trained patterns. 
Also, ART takes much less time for training compared 
with BPNs. 

5 PRINCIPLE 

The vibration monitoring idea is adopted in this work. The 
basic principle is that for any structure, the natural modes of 
vibration, which are its fundamental characteristics, are 
independent of the environmental forces and do not change 
unless there are changes in stiffness or mass distribution. 
Vibration monitoring consists of determination of the 
dynamic parameters of the structure viz natural frequencies 
and mode shapes. Any change in the mass or stiffness dis- 
tribution causes changes in the dynamic parameters. These 
changes may be due to damage in members, changes in deck 
mass, accumulation of marine growth, or foundation scour. 
It has been demonstrated that integrity monitoring based on 
frequency shift alone is not feasible for jacket platforms.15 
Changes in frequency may be caused due to variations in 
deck mass or due to excessive marine growth. However, a 
monitoring system should be able to identify these changes 
since it has to be ensured that the changes are not due to any 
damage. Consequently, it is desirable to use both frequency 
and mode shape for monitoring. 

As has been already stated, neural networks are used for 
identification of member damage from response character- 
istics. It has been observed that if a single neural network is 
used, the identification process is not efficient. This is due to 
the fact that the range of mode shape values are widely 
different for different modes and the changes may go unde- 
tected. Hence, the strategy adopted here is to train a set of 
neural networks to identify the damage in members and 
changes in deck mass, and use these networks to monitor 
the state of the structure. The inputs to the networks are the 
modal vectors and natural frequencies. In the present work, 
the problem is decomposed into several subproblems and 
different neural networks are used to solve each of the pro- 
blems. Since the problem size is reduced, the training time is 
considerably reduced and the efficiency of the system is 
increased. The input data used for each neural network are 
different. For example, the input data for the network used 
for detecting the changes in deck mass are the natural fre- 
quencies of the structure, whereas the modal vectors are 
used as inputs to the networks for detecting damage. Data 
obtained analytically using the finite-element method are 
used for training the networks. The networks used for 
detecting the damage are trained by several sets of data 
obtained with different deck masses to eliminate the effect 
of deck mass variation. Similarly, the networks used for 
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Fig. 4. Different views of the jacket platform model. 

detecting the deck mass are trained using several sets of data 
for different amounts of damage. 

6 IMPLEMENTATION 

A scale model of a typical offshore platform was used for 
the present study (Fig. 4). The model has a scale factor of 
1:35 and was fabricated using PVC tubes. Finite-element 
analyses were done on the model to generate the data for 

training the networks, as well as to test it. For the training 
data, 12 cases were analysed (Table 1). The schematic view 
of the multiple neural network system devised is shown in 

Fig. 5. The first neural network is used to detect the changes 

in deck mass. Since this network is used to define an input- 
output relationship, it is implemented using a BPN only. 

The output from this network is a single value which is 
related to the deck mass. The network was trained using 

data for -10, 0 and +lO% changes in deck mass. All the 

damage cases were used for training such that, altogether, 

there were five sets of training data (including that for the 
undamaged case). Neural net 2 uses data for the second 
flexural mode in the x-direction to detect damage in mem- 
bers 159 and 151. Neural net 3 uses the second mode in the 

y-direction to detect damages in members 159 and 165. 
There is no appreciable change in the first few modes due 

to damage in member 96, but there is a significant change in 
the 14th mode. Hence neural net 4 uses data for the 14th 
mode in the x-direction to detect damage in member 96. 

Neural nets 2, 3 and 4 were implemented using both 

Table 1. Data sets used for training the networks 

Damage case Deck mass 

-10% 0% +lO% 

Undamaged X X X 

Member 159 damaged X X X 

Member 165 damaged X X X 

Member 151 damaged X X X 

Member 96 damaged X X X 

DETECTS DAMAGES IN 
MEMBERS 159 & 151 

Fig. 5. Schematic view of the multiple neural network system. 

BPNs and the ART-2 algorithm. A three-layer BPN was 
used for the present study. The parameters of each BPN 
were different and were chosen to get the best performance. 
The vigilance parameter for each ART network which gave 

the best result was used. These networks were trained using 
the data for different deck masses such that there were three 
sets of training data for each network. 

7 RESULTS 

The system developed was tested using different damage 

cases with varying deck masses. All cases used for testing 
the system were different from those used for training. 
Damage induced simultaneously in two members was also 
used to explore the suitability for detecting combined 
damage. The system was also tested with some cases of 

partial damage. The damage cases used for testing the out- 
puts from BPNs and the ART networks are given in 
Tables 2-5. The output vector for the BPN corresponding 
to the damage case is also given in the tables. Cut-off values 

of 0.2 for the lower limit and 0.8 for the upper limit are used 

for inference from the BPN output. 
The first network, a BPN, was found to give fairly good 

estimates of the changes in deck mass (Table 2). The max- 
imum error was 2.02%, which occurred for the combined 
damage case. This shows that damage in the members does 

not seriously affect the assessment of deck mass. This can 
be attributed to the fact that the natural frequencies, which 
are used as the input to the network are fairly insensitive to 

damage. 

Table 2. Outputs from first network 

Testing cases Output from Required 
network output 

Members 159 and 165 
damaged, deck mass 0% 

2.023% 0% 

Member 159 damaged, deck 5.299% 5% 
mass +5% 
Member 165 damaged, deck -14.150% -15% 
mass -15% 
Member 159 damaged, deck +13.870% + 15 % 
mass +15% 
Member 151 damaged, deck -3.998% -5% 
mass -5% 
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Sl No. Damage case 

ART-based multiple neural networks 

Table 3. Outputs from the second network 

Back-propagation ART-2 output 

Output obtained Correct output 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Members 151 and 165 
damaged 

Members 151 and 96 
damaged 

Members 159 and 165 
damaged 

Members 159 and 96 
damaged 

Member 159 damaged, deck 
mass +5% 

Member 159 damaged, deck 
mass -15% 

Member 165 damaged, deck 
mass -15% 

Member 159 damaged, deck 
mass +15% 

Member 151 damaged, deck 
mass -5% 

Member 15 1 partially 
damaged(90%) 

Member 151 partially 
damaged@O%) 

0.958, 0.000, 0.213* 

0.000, 0.000, 0.888 

0.000, 0.981, 0.011 

0.000, 0.992, 0.088 

0.000, 0.994, 0.049 

0.000, 0.995, 0.042 

0.999, 0.000, 0.007+ 

0.000, 0.993, 0.052 

0.009, 0.000, 0.898 

0.665, 0.000, 0.606* 

0.943, 0.000, 0.384* 

0, 0, 1 Unknown pattern* 

0, 0, 1 Member 151 damaged 

0, 1,o Member 159 damaged 

0, 1,o Unknown pattern* 

0, 130 Member 159 damaged 

0, 1,o Member 159 damaged 

Unknown Member 159 damaged 

0, 130 Member 159 damaged 

0, 0, 1 Member 151 damaged 

0, 0, 1 Unknown pattern* 

0, 0, 1 Unknown pattern* 

* Detects, cannot 
’ Does not detect. 

identify. 

+ Incorrect diagnosis. 

The outputs from the other networks are grouped into four work 2 is not trained to detect damage in member 165 and 
classes viz one which gives the correct diagnosis, one which 

does not detect the damage (marked ‘), one which detects 
the patterns for damage to members 159 and 165 are similar. 

But the same damage is properly identified by net 3. 
but cannot identify the damage (marked *) and one which 
gives an incorrect diagnosis (marked ‘). Out of the 26 test 

Damage with the deck mass changed is properly diagnosed. 
This establishes that the system is insensitive to changes in 

cases, only one (No. 7 from ART2 network 2) gave an deck mass. Most of the combined damage is properly iden- 
incorrect output. This may be attributed to the fact that net- tified by the system, but it fails to identify partial damage, as 

SI No. Damage case 

Table 4. Output from third network 

Back-propagation ART output 

Output obtained Correct output 

4 

5 

6 

8 

9 

10 

11 

Members 151 and 165 
damaged 

Members 151 and 96 
damaged 

Members 159 and 165 
damaged 

Members 159 and 96 
damaged 

Member 159 damaged, deck 
mass +5% 

Member 159 damaged, deck 
mass -15% 

Member 165 damaged, deck 
mass -15% 

Member 159 damaged, deck 
mass +15% 

Member 151 damaged, deck 
mass -5% 

Member 165 partially 
damaged(90%) 

Member 165 partially 
damaged@O%) 

0.776, 0.000, 0.998* 0, 0, 1 Unknown pattern* 

0.975, 0.000, 0.998* Unknown Unknown pattern 

0.000, 0.982, 0.979* 0, 1, OP. 0, I Member 165 damaged 

0.000, 0.988, 0.580* 0, 1,o Member 159 damaged 

0.000, 0.989, 0.183 0, 130 Member 159 damaged 

0.000, 0.99 1, 0.224* 0, 1,o Member 159 damaged 

0.006, 0.134, 0.968 0, 0, 1 Member 165 damaged 

0.000, 0.988, 0.164 0, I,0 Member 159 damaged 

0.982, 0.000, 0.002+ Unknown Unknown pattern 

0.340, 0.000, 0.884* 0, 0, 1 Member 165 damaged 

0.912, 0.000, 0.745* 0, 0, 1 Unknown pattern* 

* Detects, cannot 
‘Does not detect. 

identify. 

’ Incorrect diagnosis. 
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Sl No. 

1 

2 

3 

4 

Damage case 

Members 151 and 96 
damaged 

Members 165 and 96 
damaged 

Member 96 partially 
damaged (90%) 

Member 96 partially 
damaged (80%) 

Table 5. Output from fourth network 

Back-propagation 

Output obtained Correct output 

0.040, 0.959 0, 1 

0.077, 0.922 0, 1 

0.991, o.ooLG+ 0, 1 

0.972, 0.271* 0, 1 

ART-2 output 

Member 96 damaged 

Member 96 damaged 

Unknown pattern* 

Undamaged+ 

* Detects, cannot identify. 
‘Does not detect. 

can be observed from the outputs. Only one case out of six 
of partial damage is diagnosed. Another interesting result is 

the output of the BPN for combined damage in members 

159 and 165 (No. 3 in network 2). The output obtained is the 
sum of the required outputs for damages cases 159 and 165, 

but this is classified as inconclusive here. Finally, it can be 
observed that the damage cases which are identified as 

undamaged by the system are very few. 

8 COMPARISON BETWEEN BPNS AND ART 

As already stated, the BPN, once trained, cannot adapt itself 

to new situations. But an ART network can adapt itself to 
changed conditions and new situations. The ART2 network 

program developed for the present system is capable of 
operating in the following modes. 

8.1 Training mode 

In this mode, the system automatically classifies the given 

patterns depending upon the vigilance parameter given and 
uses an iterative slow learning method to adjust the weights 
to the centroidal pattern of each class. Identification notes 

can be given for each class by the user. 

8.2 Adaptive operational mode 

The network keeps on accepting inputs from a system and 

uses the slow learning technique to adapt itself to slow 
changes. Slow changes, like accumulation of marine 

growth, etc. will not be detected. However, sudden changes 

will be detected. 

8.3 Non-adaptive operational mode 

Here, no adaptation or learning is done. The system remains 
stable and when the input pattern does not match the trained 

cases, a warning is given. This mode is also capable of 

detecting slow changes. 
These three modes are very useful in online monitoring 

systems for offshore platforms. ART systems can also be 
used with different vigilance parameters such that even 

small changes can be detected although identification may 
not be possible. ART can also be used for unattended mon- 

itoring systems such that any unrecognised pattern encoun- 
tered can automatically be tagged as a new class by storing 
the date and time of its occurrence facilitating the analysis at 

a later stage. 

As for the detection of damage, both BPNs and ART give 
good results. For partial damage, only ART gives a correct 

diagnosis. ART is observed to be more stringent since the 
cases of unknown damage which are diagnosed as unda- 
maged by the BPN are classified as unknown damage by 
ART. ART is a vector classifier and hence could not be used 
for the assessment of deck mass. Hence, it is advisable to 
use both BPNs and ART simultaneously for good results. 

9 CONCLUDING REMARKS 

1. 

2. 

3. 

4. 

5. 

A multiple neural network for damage diagnosis of a 

jacket platform model was presented. 
ART networks were used for damage detection and 

their feasibility for online damage detection was 

established. 
A comparison of ART and BPNs was carried out with 

special reference to the present application. 
It is suggested that for better performance, both ART 
networks and BPNs are to be used simultaneously. 
Further work is required to develop a system to inte- 

grate the two types of network and to infer the correct 

diagnosis from their output. 
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